Aerospace engineering glossary Free glossaries at TanslationDirectory.com translation jobs
Home Free Glossaries Free Dictionaries Post Your Translation Job! Free Articles Jobs for Translators

Aerospace engineering glossary

https://en.wikipedia.org/wiki/Glossary_of_aerospace_engineering



Become a member of TranslationDirectory.com at just $12 per month (paid per year)




Advertisements:



Use the search bar to look for terms in all glossaries, dictionaries, articles and other resources simultaneously


 

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

This glossary of aerospace engineering terms pertains specifically to aerospace engineering and its sub-disciplines. For a broad overview of engineering, see glossary of engineering.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W

A

  • Above ground level — In aviation, atmospheric sciences and broadcasting, a height above ground level (AGL ) is a height measured with respect to the underlying ground surface. This is as opposed to altitude/elevation above mean sea level (AMSL), or (in broadcast engineering) height above average terrain(HAAT). In other words, these expressions (AGL, AMSL, HAAT) indicate where the «zero level» or «reference altitude» is located.
  • Absolute humidity — describes the water content of air and is expressed in either grams per cubic meter or grams per kilogram .
  • Absolute value — In mathematics, the absolute value or modulus |x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = xfor a positive x, |x| = −x for a negative x (in which case x is positive), and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.
  • Acceleration — In physics, acceleration is the rate of change of velocity of an object with respect to time. An object’s acceleration is the net result of any and all forces acting on the object, as described by Newton’s Second Law. The SI unit for acceleration is metre per second squared (m s−2). Accelerations are vectorquantities (they have magnitude and direction) and add according to the parallelogram law. As a vector, the calculated net force is equal to the product of the object’s mass (a scalar quantity) and its acceleration.
  • Acquisition of signal — A pass, in spaceflight and satellite communications, is the period in which a satellite or other spacecraft is above the local horizon and available for radio communication with a particular ground station, satellite receiver, or relay satellite (or, in some cases, for visual sighting). The beginning of a pass is termed acquisition of signal; the end of a pass is termed loss of signal. The point at which a spacecraft comes closest to a ground observer is the time of closest approach.
  • Action — In physics, action is an attribute of the dynamics of a physical system from which the equations of motion of the system can be derived. It is a mathematical functional which takes the trajectory, also called path or history, of the system as its argument and has a real number as its result. Generally, the action takes different values for different paths. Action has the dimensions of [energy]⋅[time] or [momentum]⋅[length], and its SI unit is joule-second.
  • ADF —Automatic direction finder
  • Advanced Space Vision System — The Advanced Space Vision System (also known as the Space Vision System or by its acronym SVS) is a computer visionsystem designed primarily for International Space Station (ISS) assembly. The system uses regular 2D cameras in the Space Shuttle bay, on the Canadarm, or on the ISS along with cooperative targets to calculate the 3D position of an object.
  • Aeroacoustics — Is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.
  • Aerobraking — is a spaceflight maneuver that reduces the high point of an elliptical orbit (apoapsis) by flying the vehicle through the atmosphere at the low point of the orbit (periapsis). The resulting drag slows the spacecraft. Aerobraking is used when a spacecraft requires a low orbit after arriving at a body with an atmosphere, and it requires less fuel than does the direct use of a rocket engine.
  • Aerocapture — is an orbital transfer maneuver used to reduce the velocity of a spacecraft from a hyperbolic trajectory to an elliptical orbit around the targeted celestial body.
  • Aerodynamics — is the study of the motion of air, particularly its interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields.
  • Aeroelasticity — is the branch of physics and engineering that studies the interactions between the inertial, elastic, and aerodynamic forces that occur when an elastic body is exposed to a fluid flow. Although historical studies have been focused on aeronautical applications, recent research has found applications in fields such as energy harvesting and understanding snoring. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity, which deals with the static or steady response of an elastic body to a fluid flow; and dynamic aeroelasticity, which deals with the body’s dynamic (typically vibrational) response. Aeroelasticity draws on the study of fluid mechanics, solid mechanics, structural dynamics and dynamical systems. The synthesis of aeroelasticity with thermodynamics is known as aerothermoelasticity, and its synthesis with control theory is known as aeroservoelasticity.
  • Aeronautics — Is the science or art involved with the study, design, and manufacturing of air flight capable machines, and the techniques of operating aircraft and rockets within the atmosphere.
  • Aerospace architecture — is broadly defined to encompass architectural design of non-habitable and habitable structures and living and working environments in aerospace-related facilities, habitats, and vehicles. These environments include, but are not limited to: science platform aircraft and aircraft-deployable systems; space vehicles, space stations, habitats and lunar and planetary surface construction bases; and Earth-based control, experiment, launch, logistics, payload, simulation and test facilities. Earth analogs to space applications may include Antarctic, desert, high altitude, underground, undersea environments and closed ecological systems.
  • Aerospace bearingAerospace bearings are the bearings installed in aircraft and aerospace systems including commercial, private, military, or space applications.
  • Aerospace engineering — is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: Aeronautical engineering and Astronautical Engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering.
  • Aerospace materials — are materials, frequently metal alloys, that have either been developed for, or have come to prominence through, their use for aerospacepurposes. These uses often require exceptional performance, strength or heat resistance, even at the cost of considerable expense in their production or machining. Others are chosen for their long-term reliability in this safety-conscious field, particularly for their resistance to fatigue.
  • Aerospike engine — is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes. It belongs to the class of altitude compensating nozzle engines. A vehicle with an aerospike engine uses 25–30% less fuel at low altitudes, where most missions have the greatest need for thrust.
  • Aerostat — is a lighter than air aircraft that gains its lift through the use of a buoyant gas. Aerostats include unpowered balloons and powered airships.
  • Aerostructure — is a component of an aircraft’s airframe. This may include all or part of the fuselage, wings, or flight control surfaces.
  • Aft-crossing trajectory — is an alternate flight path for a rocket. The rocket’s rotation (induced by the deployment from the aircraft) is slowed by a small parachuteattached to its tail, then ignited once the carrier aircraft has passed it. It is ignited before it is pointing fully vertically, however it will turn to do so, and accelerates to pass behind the carrier aircraft.
  • AGL — Above ground level
  • Aileron — is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll (or movement around the aircraft’s longitudinal axis), which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called ‘rolling’ or ‘banking’.
  • Air-augmented rocket
  • Aircraft — is a machine that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships (including blimps), gliders, and hot air balloons.
  • Aircraft flight control systems — A conventional fixed-wing aircraft flight control system consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft’s direction in flight. Aircraft engine controls are also considered as flight controls as they change speed.
  • Aircraft flight mechanics
  • Airfoil — An airfoil (American English) or aerofoil (British English) is the cross-sectional shape of a wing, blade (of a propeller, rotor, or turbine), or sail (as seen in cross-section).
  • Airlock — is a device which permits the passage of people and objects between a pressure vessel and its surroundings while minimizing the change of pressure in the vessel and loss of air from it. The lock consists of a small chamber with two airtight doors in series which do not open simultaneously.
  • Airship — An airship or dirigible balloon is a type of aerostat or lighter-than-air aircraft that can navigate through the air under its own power. Aerostats gain their lift from large gas bags filled with a lifting gas that is less dense than the surrounding air.
  • Albedo — is the measure of the diffuse reflection of solar radiation out of the total solar radiation received by an astronomical body (e.g. a planet like Earth). It is dimensionless and measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects all incident radiation).
  • Anemometer — is a device used for measuring wind speed, and is also a common weather station instrument. The term is derived from the Greek word anemos, which means wind, and is used to describe any wind speed instrument used in meteorology.
  • Angle of attack — In fluid dynamics, angle of attack (AOA, or α) is the angle between a reference line on a body (often the chord line of an airfoil) and the vectorrepresenting the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body’s reference line and the oncoming flow.
  • Angular momentum — In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational equivalent of linear momentum. It is an important quantity in physics because it is a conserved quantity—the total angular momentum of a system remains constant unless acted on by an external torque.
  • Angular velocity — In physics, the angular velocity of a particle is the rate at which it rotates around a chosen center point: that is, the time rate of change of its angular displacement relative to the origin (i.e. in layman’s terms: how quickly an object goes around something over a period of time — e.g. how fast the earth orbits the sun). It is measured in angle per unit time, radians per second in SI units, and is usually represented by the symbol omega (ω, sometimes Ω). By convention, positive angular velocity indicates counter-clockwise rotation, while negative is clockwise.
  • Anticyclone — An anticyclone (that is, opposite to a cyclone) is a weather phenomenon defined by the United States National Weather Service’s glossary as «a large-scale circulation of winds around a central region of high atmospheric pressure, clockwise in the Northern Hemisphere, counterclockwise in the Southern Hemisphere».
  • Antimatter rocket — is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.
  • Apsis — is an extreme point in the orbit of an object. The word comes via Latin from Greek and is cognate with apse. For elliptic orbits about a larger body, there are two apsides, named with the prefixes peri- (from περί (peri), meaning ‘near’) and ap-/apo- (from ἀπ(ό) (ap(ó)), meaning ‘away from’) added to a reference to the body being orbited.
  • Arcjet rocket — or arcjet thruster is a form of electrically powered spacecraft propulsion, in which an electrical discharge (arc) is created in a flow of propellant (typically hydrazine or ammonia). This imparts additional energy to the propellant, so that one can extract more work out of each kilogram of propellant, at the expense of increased power consumption and (usually) higher cost. Also, the thrust levels available from typically used arcjet engines are very low compared with chemical engines.
  • Areal velocity — In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is the rate at which area is swept out by a particle as it moves along a curve.
  • Argument of periapsis — (also called argument of perifocus or argument of pericenter), symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body’s ascending node to its periapsis, measured in the direction of motion.
  • ARP4761
  • Aspect ratio (aeronautics) — In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.
  • AsteroidAsteroids are minor planets, especially of the inner Solar System. Larger asteroids have also been called planetoids. These terms have historically been applied to any astronomical object orbiting the Sun that did not resemble a planet-like disc and was not observed to have characteristics of an active cometsuch as a tail. As minor planets in the outer Solar System were discovered they were typically found to have volatile-rich surfaces similar to comets. As a result, they were often distinguished from objects found in the main asteroid belt.
  • AstrodynamicsOrbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft.
  • Atmospheric entry — is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris or bolides; and controlled entry (or reentry) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent and landing of spacecraft are collectively termed as EDL.
  • Attitude control — is controlling the orientation of an object with respect to an inertial frame of reference or another entity like the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the torques needed to re-orient the vehicle to a desired attitude, and algorithms to command the actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired attitude. The integrated field that studies the combination of sensors, actuators and algorithms is called «Guidance, Navigation and Control» (GNC).
  • Automatic direction finder — (ADF) is a marine or aircraft radio-navigation instrument that automatically and continuously displays the relative bearing from the ship or aircraft to a suitable radio station.
  • Avionics — are the electronic systems used on aircraft, artificial satellites, and spacecraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions.
  • Axial stress — a normal stress parallel to the axis of cylindrical symmetry.

B

  • Balloon — In aeronautics, a balloon is an unpowered aerostat, which remains aloft or floats due to its buoyancy. A balloon may be free, moving with the wind, or tethered to a fixed point. It is distinct from an airship, which is a powered aerostat that can propel itself through the air in a controlled manner.
  • Ballute — (a portmanteau of balloon and parachute) is a parachute-like braking device optimized for use at high altitudes and supersonic velocities. Invented by Goodyear in 1958, the original ballute was a cone-shaped balloon with a toroidal burble fence fitted around its widest point. A burble fence is an inflated structure intended to ensure flow separation. This stabilizes the ballute as it decelerates through different flow regimes (from supersonic to subsonic).
  • Beam-powered propulsion — also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters and light sails, whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines.
  • Bearing — In navigation, bearing is the horizontal angle between the direction of an object and another object, or between it and that of true north. Absolute bearing refers to the angle between the magnetic North (magnetic bearing) or true North (true bearing) and an object. For example, an object to the East would have an absolute bearing of 90 degrees. ‘Relative bearing refers to the angle between the craft’s forward direction, and the location of another object. For example, an object relative bearing of 0 degrees would be dead ahead; an object relative bearing 180 degrees would be behind. Bearings can be measured in mils or degrees.
  • Bernoulli’s principle — In fluid dynamics, Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in pressureor a decrease in the fluid’s potential energy.
  • Bi-elliptic transfer — is an orbital maneuver that moves a spacecraft from one orbit to another and may, in certain situations, require less delta-v than a Hohmann transfer maneuver. The bi-elliptic transfer consists of two half-elliptic orbits. From the initial orbit, a first burn expends delta-v to boost the spacecraft into the first transfer orbit with an apoapsis at some point away from the central body. At this point a second burn sends the spacecraft into the second elliptical orbit with periapsis at the radius of the final desired orbit, where a third burn is performed, injecting the spacecraft into the desired orbit.
  • Big dumb booster — (BDB), is a general class of launch vehicle based on the premise that it is cheaper to operate large rockets of simple design than it is to operate smaller, more complex ones regardless of the lower payload efficiency.
  • Bleed air — produced by gas turbine engines is compressed air that is taken from the compressor stage of those engines, which is upstream of the fuel-burning sections.
  • Booster — A booster rocket (or engine) is either the first stage of a multistage launch vehicle, or else a shorter-burning rocket used in parallel with longer-burning sustainer rockets to augment the space vehicle’s takeoff thrust and payload capability.
  • Boundary layer — In physics and fluid mechanics, a boundary layer is an important concept and refers to the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. In the Earth’s atmosphere, the atmospheric boundary layer is the air layer near the ground affected by diurnal heat, moisture or momentum transfer to or from the surface. On an aircraft wing the boundary layer is the part of the flow close to the wing, where viscous forcesdistort the surrounding non-viscous flow.
  • Buoyancy — In physics, buoyancy or upthrust, is an upward force exerted by a fluid that opposes the weight of an immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. This pressure difference results in a net upwards force on the object. The magnitude of that force exerted is proportional to that pressure difference, and (as explained by Archimedes’ principle) is equivalent to the weight of the fluid that would otherwise occupy the volume of the object, i.e. the displaced fluid.

C

  • Cabin pressurization — is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft, in order to create a safe and comfortable environment for passengers and crew flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic tanks. The air is cooled, humidified, and mixed with recirculated air if necessary, before it is distributed to the cabin by one or more environmental control systems. The cabin pressure is regulated by the outflow valve.
  • Cable lacing — is a method for tying wiring harnesses and cable looms, traditionally used in telecommunication, naval, and aerospace applications. This old cable management technique, taught to generations of linemen, is still used in some modern applications since it does not create obstructions along the length of the cable, avoiding the handling problems of cables groomed by plastic or hook-and-loop cable ties.
  • Canard — is an aeronautical arrangement wherein a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft. The term «canard» may be used to describe the aircraft itself, the wing configuration or the foreplane.
  • Centennial challenges — The Centennial Challenges are NASA space competition inducement prize contests for non-government-funded technological achievements by American teams.
  • Center of gravity — A body’s center of gravity is the point around which the resultant torque due to gravity forces vanishes. Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same. However, for satellites in orbit around a planet, in the absence of other torques being applied to a satellite, the slight variation (gradient) in gravitational field between closer-to (stronger) and further-from (weaker) the planet can lead to a torque that will tend to align the satellite such that its long axis is vertical. In such a case, it is important to make the distinction between the center-of-gravity and the mass-center. Any horizontal offset between the two will result in an applied torque.
  • Center of mass — In physics, the center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to zero, or the point where if a force is applied it moves in the direction of the force without rotating. The distribution of mass is balanced around the center of mass and the average of the weighted position coordinates of the distributed mass defines its coordinates.
  • Center of pressure — is the point where the total sum of a pressure field acts on a body, causing a force to act through that point.
  • Chord — is the imaginary straight line joining the leading and trailing edges of an aerofoil. The chord length is the distance between the trailing edge and the point on the leading edge where the chord intersects the leading edge.
  • Clean configuration — is the flight configuration of a fixed-wing aircraft when its external equipment is retracted to minimize drag and thus maximize airspeed for a given power setting.
  • Cockpit — or flight deck, is the area, usually near the front of an aircraft or spacecraft, from which a pilot controls the aircraft.
  • Collimated beam — A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. Such a beam cannot be created, due to diffraction.
  • Comet — is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail.
  • Compression — In mechanics, compression is the application of balanced inward («pushing») forces to different points on a material or structure, that is, forces with no net sum or torque directed so as to reduce its size in one or more directions. It is contrasted with tension or traction, the application of balanced outward («pulling») forces; and with shearing forces, directed so as to displace layers of the material parallel to each other. The compressive strength of materials and structures is an important engineering consideration.
  • Compressibility — In thermodynamics and fluid mechanics, compressibility (also known as the coefficient of compressibility or isothermal compressibility) is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress) change. In its simple form, the compressibility β may be expressed as , where V is volume and p is pressure. The choice to define compressibility as the opposite of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. t is also known as reciprocal of bulk modulus(k) of elasticity of a fluid.
  • Computational fluid dynamics — (CFD), is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.
  • Constant speed drive — (CSD), is a type of transmission that takes an input shaft rotating at a wide range of speeds, delivering this power to an output shaft that rotates at a constant speed, despite the varying input. They are used to drive mechanisms, typically electrical generators, that require a constant input speed. The term is most commonly applied to hydraulic transmissions found on the accessory drives of gas turbine engines, such as aircraft jet engines. On modern aircraft, the CSD is often combined with a generator into a single unit known as an integrated drive generator (IDG).
  • Control engineering — or control systems engineering, is an engineering discipline that applies automatic control theory to design systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering at many institutions around the world.
  • Conservation of momentum — In a closed system (one that does not exchange any matter with its surroundings and is not acted on by external forces) the total momentum is constant. This fact, known as the law of conservation of momentum, is implied by Newton's laws of motion.
  • Crew Exploration Vehicle — The Crew Exploration Vehicle (CEV) was the conceptual component of the U.S. NASA Vision for Space Exploration that later became known as the Orion spacecraft. The Orion CEV was part of NASA's Constellation Program to send human explorers back to the Moon, and then onward to Mars and other destinations in the solar system.
  • Critical mach — In aerodynamics, the critical Mach number (Mcr or M* ) of an aircraft is the lowest Mach number at which the airflow over some point of the aircraft reaches the speed of sound, but does not exceed it. At the lower critical Mach number, airflow around the entire aircraft is subsonic. At the upper critical Mach number, airflow around the entire aircraft is supersonic.
  • Centrifugal compressorCentrifugal compressors, sometimes called radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. They achieve a pressure rise by adding kinetic energy/velocity to a continuous flow of fluid through the rotor or impeller. This kinetic energy is then converted to an increase in potential energy/static pressure by slowing the flow through a diffuser. The pressure rise in the impeller is in most cases almost equal to the rise in the diffuser.
  • Constant speed drive — A constant speed drive (CSD) is a type of transmission that takes an input shaft rotating at a wide range of speeds, delivering this power to an output shaft that rotates at a constant speed, despite the varying input. They are used to drive mechanisms, typically electrical generators, that require a constant input speed.
  • Corrected flow — Corrected Flow is the mass flow that would pass through a device (e.g. compressor, bypass duct, etc.) if the inlet pressure and temperature corresponded to ambient conditions at Sea Level, on a Standard Day (e.g. 101.325 kPa, 288.15 K).
  • Corrected speed — Corrected speed is the speed a component would rotate at if the inlet temperature corresponded to ambient conditions at sea level, on a standard day (i.e. 288.15 K).
  • Cylinder stress — In mechanics, a cylinder stress is a stress distribution with rotational symmetry; that is, which remains unchanged if the stressed object is rotated about some fixed axis.

D

  • Damage tolerance — is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws can exist in any structure and such flaws propagate with usage.
  • Decalage — Decalage on a fixed-wing aircraft is the angle difference between the upper and lower wings of a biplane, i.e. the acute angle contained between the chords of the wings in question.
  • De Laval nozzle — A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube that is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a hot, pressurized gas passing through it to a higher supersonic speed in the axial (thrust) direction, by converting the heat energy of the flow into kinetic energy. Because of this, the nozzle is widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.
  • Dead reckoning — In navigation, dead reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course. The corresponding term in biology, used to describe the processes by which animals update their estimates of position or heading, is path integration.
  • Deflection — In engineering, deflection is the degree to which a structural element is displaced under a load. It may refer to an angle or a distance. The deflection distance of a member under a load is directly related to the slope of the deflected shape of the member under that load, and can be calculated by integrating the function that mathematically describes the slope of the member under that load. Deflection can be calculated by standard formula (will only give the deflection of common beam configurations and load cases at discrete locations), or by methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method, amongst others. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.
  • Deformation (engineering)

    In materials science, deformation refers to any changes in the shape or size of an object due to

    • an applied force (the deformation energy in this case is transferred through work) or
    • a change in temperature (the deformation energy in this case is transferred through heat).

    The first case can be a result of tensile (pulling) forces, compressive (pushing) forces, shear, bending or torsion (twisting).

    In the second case, the most significant factor, which is determined by the temperature, is the mobility of the structural defects such as grain boundaries, point vacancies, line and screw dislocations, stacking faults and twins in both crystalline and non-crystalline solids. The movement or displacement of such mobile defects is thermally activated, and thus limited by the rate of atomic diffusion.

  • Deformation (mechanics) — Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.
  • Delta-v — Delta-v (literally "change in velocity"), symbolised as ∆v and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse that is needed to perform a maneuver such as launch from, or landing on a planet or moon, or in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of the vehicle.
  • Delta-v budget — In astrodynamics and aerospace, a delta-v budget is an estimate of the total delta-v required for a space mission. It is calculated as the sum of the delta-v required for the propulsive maneuvers during the mission, and as input to the Tsiolkovsky rocket equation, determines how much propellant is required for a vehicle of given mass and propulsion system.
  • Delta wing— The delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).
  • Density — The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D can also be used.
  • Departure resistance – Departure resistance is a quality of an aircraft which enables it to remain in controlled flight and resist entering potentially dangerous less-controlled maneuvers such as spin.
  • Derivative — The derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.
  • Digital Datcom — The United States Air Force Stability and Control Digital DATCOM is a computer program that implements the methods contained in the USAF Stability and Control DATCOM to calculate the static stability, control and dynamic derivative characteristics of fixed-wing aircraft. Digital DATCOM requires an input file containing a geometric description of an aircraft, and outputs its corresponding dimensionless stability derivatives according to the specified flight conditions. The values obtained can be used to calculate meaningful aspects of flight dynamics.
  • Dihedral — Dihedral angle is the upward angle from horizontal of the wings or tailplane of a fixed-wing aircraft. "Anhedral angle" is the name given to negative dihedral angle, that is, when there is a downward angle from horizontal of the wings or tailplane of a fixed-wing aircraft.
  • Disk loading — In fluid dynamics, disk loading or disc loading is the average pressure change across an actuator disk, such as an airscrew. Airscrews with a relatively low disk loading are typically called rotors, including helicopter main rotors and tail rotors; propellers typically have a higher disk loading. The V-22 Osprey tiltrotor aircraft has a high disk loading relative to a helicopter in the hover mode, but a relatively low disk loading in fixed-wing mode compared to a turboprop aircraft.
  • Displacement (vector) — A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P. It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point. A displacement may be identified with the translation that maps the initial position to the final position.
  • Distance measuring equipment — Distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). An aircraft interrogator initiates an exchange by transmitting a pulse pair on the carrier frequency and having the spacing (collecively termed a channel) assigned to the transponder ground station. Line-of-visibility between the aircraft and ground station is required. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.
  • DME — distance measuring equipment.
  • DO-178B — DO-178B, Software Considerations in Airborne Systems and Equipment Certification is a guideline dealing with the safety of safety-critical software used in certain airborne systems. Although technically a guideline, it was a de facto standard for developing avionics software systems until it was replaced in 2012 by DO-178C.
  • DO-254 — RTCA/DO-254, Design Assurance Guidance for Airborne Electronic Hardware is a document providing guidance for the development of airborne electronic hardware, published by RTCA, Incorporated.
  • Drag (physics) — In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers (or surfaces) or a fluid and a solid surface. Unlike other resistive forces, such as dry friction, which are nearly independent of velocity, drag forces depend on velocity. Drag force is proportional to the velocity for a laminar flow and the squared velocity for a turbulent flow. Even though the ultimate cause of a drag is viscous friction, the turbulent drag is independent of viscosity.
  • Drag coefficient — In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.
  • Drag equation — In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid.
  • Drop test — A drop test is a method of testing the in-flight characteristics of prototype or experimental aircraft and spacecraft by raising the test vehicle to a specific altitude and then releasing it. Test flights involving powered aircraft, particularly rocket-powered aircraft, may be referred to as drop launches due to the launch of the aircraft's rockets after release from its carrier aircraft.
  • Dual mode propulsion rocket — Dual mode propulsion systems combine the high efficiency of bipropellant rockets with the reliability and simplicity of monopropellant rockets. Dual mode systems are either hydrazine/nitrogen tetroxide, or monomethylhydrazine/hydrogen peroxide (the former is much more common). Typically, this system works as follows: During the initial high-impulse orbit-raising maneuvers, the system operates in a bipropellant fashion, providing high thrust at high efficiency; when it arrives on orbit, it closes off either the fuel or oxidizer, and conducts the remainder of its mission in a simple, predictable monopropellant fashion.
  • Ductility — Ductility is a measure of a material's ability to undergo significant plastic deformation before rupture, which may be expressed as percent elongation or percent area reduction from a tensile test. According to Shigley's Mechanical Engineering Design (10th Ed.) significant denotes about 5.0 percent elongation (Section 5.3, p. 233). See also Eq. 2–12, p. 50 for definitions of percent elongation and percent area reduction. Ductility is often characterized by a material's ability to be stretched into a wire.

E

  • Earth’s atmosphere — The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earth's gravity. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).
  • Eccentric anomaly — In orbital mechanics, eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit. The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly.
  • Eccentricity vector — In celestial mechanics, the eccentricity vector of a Kepler orbit is the dimensionless vector with direction pointing from apoapsis to periapsis and with magnitude equal to the orbit's scalar eccentricity. For Kepler orbits the eccentricity vector is a constant of motion. Its main use is in the analysis of almost circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the osculating eccentricity vector to change continuously. For the eccentricity and argument of periapsis parameters, eccentricity zero (circular orbit) corresponds to a singularity. The magnitude of the eccentricity vector represents the eccentricity of the orbit. Note that the velocity and position vectors need to be relative to the inertial frame of the central body.
  • Eigenvector slew — In aerospace engineering, especially those areas dealing with spacecraft, the eigenvector slew is a method to calculate a steering correction (called a slew) by rotating the spacecraft around one fixed axis, or a gimbal. This corresponds in general to the fastest and most efficient way to reach the desired target orientation as there is only one acceleration phase and one braking phase for the angular rate. If this fixed axis is not a principal axis a time varying torque must be applied to force the spacecraft to rotate as desired, though. Also the gyroscopic effect of momentum wheels must be compensated for.
  • Electrostatic ion thruster — The gridded ion thruster is a common design for ion thrusters, a highly efficient low-thrust spacecraft propulsion running on electrical power. These designs use high-voltage grid electrodes to accelerate ions with electrostatic forces.
  • Elevator — Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, sometimes located at the front of the aircraft (early airplanes) or integrated into a rear "all-moving tailplane" also called a slab elevator or stabilator.
  • Elliptic partial differential equation — Second order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic.
  • Empennage — The empennage (/ˌɑːmpɪˈnɑːʒ/ or /ˈɛmpɪnɪdʒ/), also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow. The term derives from the French language word empenner which means "to feather an arrow". Most aircraft feature an empennage incorporating vertical and horizontal stabilising surfaces which stabilise the flight dynamics of yaw and pitch, as well as housing control surfaces.
  • Energy — In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.
  • Engineering — Engineering is the application of knowledge in the form of science, mathematics, and empirical evidence, to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
  • Engineering economics — Engineering economics, previously known as engineering economy, is a subset of economics concerned with the use and "...application of economic principles" in the analysis of engineering decisions. As a discipline, it is focused on the branch of economics known as microeconomics in that it studies the behavior of individuals and firms in making decisions regarding the allocation of limited resources.
  • Enstrophy — In fluid dynamics, the enstrophy E can be interpreted as another type of potential density; or, more concretely, the quantity directly related to the kinetic energy in the flow model that corresponds to dissipation effects in the fluid. It is particularly useful in the study of turbulent flows, and is often identified in the study of thrusters as well as the field of combustion theory.
  • Equation of motion — In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables: normally spatial coordinates and time are used, but others are also possible, such as momentum components and time. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
  • ESA — European Space Agency
  • Euler angles — The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra.
  • European Space Agency — The European Space Agency (ESA; French: Agence spatiale européenne, ASE; German: Europäische Weltraumorganisation) is an intergovernmental organisation of 22 member states dedicated to the exploration of space. Established in 1975 and headquartered in Paris, France, ESA has a worldwide staff of about 2,200 in 2018 and an annual budget of about €5.72 billion (~US$6.6 billion) in 2019.
  • Expander cycle (rocket) — The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The heated, now gaseous, fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned.

F

  • Fatigue — In materials science, fatigue is the weakening of a material caused by repeatedly applied loads. It is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values that cause such damage may be much less than the strength of the material typically quoted as the ultimate tensile stress limit, or the yield stress limit.
  • Field emission electric propulsion — Field-emission electric propulsion (FEEP) is an advanced electrostatic space propulsion concept, a form of ion thruster, that uses liquid metal (usually either caesium, indium or mercury) as a propellant. A FEEP device consists of an emitter and an accelerator electrode. A potential difference of the order of 10 kV is applied between the two, which generates a strong electric field at the tip of the metal surface. The interplay of electric force and surface tension generates surface instabilities which give rise to Taylor cones on the liquid surface. At sufficiently high values of the applied field, ions are extracted from the cone tip by field evaporation or similar mechanisms, which then are accelerated to high velocities (typically 100 km/s or more).
  • Fixed-wing aircraft — A fixed-wing aircraft is a flying machine, such as an airplane or aeroplane (see spelling differences), which is capable of flight using wings that generate lift caused by the aircraft's forward airspeed and the shape of the wings. Fixed-wing aircraft are distinct from rotary-wing aircraft (in which the wings form a rotor mounted on a spinning shaft or "mast"), and ornithopters (in which the wings flap in a manner similar to that of a bird). The wings of a fixed-wing aircraft are not necessarily rigid; kites, hang gliders, variable-sweep wing aircraft and aeroplanes that use wing morphing are all examples of fixed-wing aircraft.
  • Flap — Flaps are a kind of high-lift device used to increase the lift of an aircraft wing at a given airspeed. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used for extra lift on takeoff. Flaps also cause an increase in drag in mid-flight, so they are retracted when not needed.
  • Flight control surfaces — Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.
  • Flight control system (aircraft) — A conventional fixed-wing aircraft flight control system consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered as flight controls as they change speed.
  • Flight control system (helicopter) — A helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a deliberate way. To tilt forward and back (pitch) or sideways (roll), requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift (force) at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.
  • Flight dynamics — Flight dynamics is the study of the performance, stability, and control of vehicles flying through the air or in outer space. It is concerned with how forces acting on the vehicle influence its speed and attitude with respect to time.
  • Flight management system — A flight management system (FMS) is a fundamental component of a modern airliner's avionics. An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan. Using various sensors (such as GPS and INS often backed up by radio navigation) to determine the aircraft's position, the FMS can guide the aircraft along the flight plan. From the cockpit, the FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touchscreen. The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), Navigation Display (ND), or Multifunction Display (MFD). The FMS can be summarised as being a dual system consisting of the Flight Management Computer (FMC), CDU and a cross talk bus.
  • Floatstick — A floatstick is a device to measure fuel levels in modern large aircraft. It is made up of two tubes, one enclosed within the other, around which is a ring-shaped float that contains a magnet. There is also a magnet attached to the top of the floatstick. The floatstick is withdrawn from the bottom of the wing until the magnets stick, indicating the level of the fuel.
  • Fluid — In physics, a fluid is a substance that continually deforms (flows) under an applied shear stress, or external force. Fluids are a phase of matter and include liquids, gases and plasmas. They are substances with zero shear modulus, or, in simpler terms, substances which cannot resist any shear force applied to them.
  • Fluid dynamics — In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
  • Fluid mechanics — Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, astrophysics, and biology.
  • Fluid statics — Fluid statics or hydrostatics is the branch of fluid mechanics that studies "fluids at rest and the pressure in a fluid or exerted by a fluid on an immersed body".
  • FMS — Flight management system.
  • Force — In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newtons and represented by the symbol F.
  • Freefall — In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on it.
  • Fuselage — The fuselage (/ˈfjuːzəlɑːʒ/; from the French fuselé "spindle-shaped") is an aircraft's main body section. It holds crew, passengers, and cargo. In single-engine aircraft it will usually contain an engine, as well, although in some amphibious aircraft the single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating hull. The fuselage also serves to position control and stabilization surfaces in specific relationships to lifting surfaces, which is required for aircraft stability and maneuverability.
  • Future Air Navigation System — The Future Air Navigation System (FANS) is an avionics system which provides direct data link communication between the pilot and the air traffic controller. The communications include air traffic control clearances, pilot requests and position reporting. In the FANS-B equipped Airbus A320 family aircraft, an Air Traffic Services Unit (ATSU) and a VHF Data Link radio (VDR3) in the avionics rack and two data link control and display units (DCDUs) in the cockpit enable the flight crew to read and answer the controller–pilot data link communications (CPDLC) messages received from the ground.
  • Flying wing — A flying wing is a tailless fixed-wing aircraft that has no definite fuselage. The crew, payload, fuel, and equipment are typically housed inside the main wing structure, although a flying wing may have various small protuberances such as pods, nacelles, blisters, booms, or vertical stabilizers.

G

  • Galaxy — A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few hundred million (108) stars to giants with one hundred trillion (1014) stars, each orbiting its galaxy's center of mass.
  • Gas-generator cycle (rocket) — The gas-generator cycle is a power cycle of a bipropellant rocket engine. Some of the propellant is burned in a gas generator and the resulting hot gas is used to power the engine's pumps. The gas is then exhausted. Because something is "thrown away" this type of engine is also known as open cycle.
  • Geostationary orbit — A geostationary orbit, often referred to as a geosynchronous equatorial orbit (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) above Earth's equator and following the direction of Earth's rotation. An object in such an orbit appears motionless, at a fixed position in the sky, to ground observers. Communications satellites and weather satellites are often placed in geostationary orbits, so that the satellite antennae (located on Earth) that communicate with them do not have to rotate to track them, but can be pointed permanently at the position in the sky where the satellites are located. Using this characteristic, ocean-color monitoring satellites with visible and near-infrared light sensors (e.g. GOCI) can also be operated in geostationary orbit in order to monitor sensitive changes of ocean environments.
  • Geosynchronous orbit — A geosynchronous orbit (sometimes abbreviated GSO) is an orbit around Earth of a satellite with an orbital period that matches Earth's rotation on its axis, which takes one sidereal day (about 23 hours, 56 minutes, and 4 seconds). The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky traces out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. Satellites are typically launched in an eastward direction. A geosynchronous orbit is 35,786 km (22,236 mi) above the Earth's surface. Those closer to Earth orbit faster than Earth rotates, so from Earth, they appear to move eastward while those that orbit beyond geosynchronous distances appear to move westward.
  • Glide ratio — When flown at a constant speed in still air a glider moves forwards a certain distance for a certain distance downwards. The ratio of the distance forwards to downwards is called the glide ratio. The glide ratio (E) is numerically equal to the lift-to-drag ratio under these conditions; but is not necessarily equal during other manoeuvres, especially if speed is not constant. A glider's glide ratio varies with airspeed, but there is a maximum value which is frequently quoted. Glide ratio usually varies little with vehicle loading; a heavier vehicle glides faster, but nearly maintains its glide ratio.
  • Glider — A glider is a heavier-than-air aircraft that is supported in flight by the dynamic reaction of the air against its lifting surfaces, and whose free flight does not depend on an engine. Most gliders do not have an engine, although motor-gliders have small engines for extending their flight when necessary by sustaining the altitude (normally a sailplane is on a continuously descending slope) with some being powerful enough to take off self-launch.
  • Global Positioning System — The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Air Force. It is a global navigation satellite system that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. Obstacles such as mountains and buildings block the relatively weak GPS signals.
  • Goddard problem — In rocketry, the Goddard problem is to optimize the altitude of a rocket, ascending vertically, and taking into account atmospheric drag and the gravitational field. This was first posed by Robert H. Goddard in his 1919 publication, "A Method of Reaching Extreme Altitudes".
  • GPS — Global Positioning System.
  • Gravitational constant — The gravitational constant (also known as the "universal gravitational constant", the "Newtonian constant of gravitation", or the "Cavendish gravitational constant"), denoted by the letter G, is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's general theory of relativity.
  • Gravitational slingshot — In orbital mechanics and aerospace engineering, a gravitational slingshot, gravity assist maneuver, or swing-by is the use of the relative movement (e.g. orbit around the Sun) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.
  • Gravity — Gravity (from Latin gravitas, meaning 'weight'), or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward (or gravitate toward) one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing, forming stars – and for the stars to group together into galaxies – so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker on farther objects.

H

  • Hall effect thruster — In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters trap electrons in a magnetic field and then use the electrons to ionize propellant, efficiently accelerate the ions to produce thrust, and neutralize the ions in the plume. Hall-effect thrusters (based on the discovery by Edwin Hall) are sometimes referred to as Hall thrusters or Hall-current thrusters. Hall thrusters are often regarded as a moderate specific impulse (1,600 s) space propulsion technology. The Hall-effect thruster has benefited from considerable theoretical and experimental research since the 1960s.
  • Heat shield — A heat shield is a part of an object designed to protect the object from overheating by dissipating, reflecting or simply absorbing the heat. The term is most often used in reference to exhaust heat management and to systems for dissipation of heat due to friction.
  • Helicopter — A helicopter is a type of rotorcraft in which lift and thrust are supplied by rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL (Vertical TakeOff and Landing) aircraft cannot perform.
  • High-hypersonic — Although "subsonic" and "supersonic" usually refer to speeds below and above the local speed of sound respectively, aerodynamicists often use these terms to refer to particular ranges of Mach values. This occurs because a "transonic regime" exists around M=1 where approximations of the Navier–Stokes equations used for subsonic design no longer apply, partly because the flow locally exceeds M=1 even when the freestream. Mach number is below this value. The "supersonic regime" usually refers to the set of Mach numbers for which linearised theory may be used; for example, where the (air) flow is not chemically reacting and where heat transfer between air and vehicle may be reasonably neglected in calculations. Generally, NASA defines "high" hypersonic as any Mach number from 10 to 25, and re-entry speeds as anything greater than Mach 25. Among the aircraft operating in this regime are the Space Shuttle and (theoretically) various developing spaceplanes.
  • Hohmann transfer orbit — In orbital mechanics, the Hohmann transfer orbit (/ˈhoʊmən/) is an elliptical orbit used to transfer between two circular orbits of different radii in the same plane. In general a Hohmann transfer orbit uses the lowest possible amount of energy in traveling between two objects orbiting at these radii, and so is used to send the maximum amount of mission payload with the fixed amount of energy that can be imparted by a particular rocket. Non-Hohmann transfer paths may have other advantages for a particular mission such as shorter transfer times, but will necessarily require a reduction in payload mass and/or use of a more powerful rocket.
  • Hybrid rocket — A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back at least 75 years.
  • Hydrodynamics — In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
  • Hydrostatics — Fluid statics or hydrostatics is the branch of fluid mechanics that studies "fluids at rest and the pressure in a fluid or exerted by a fluid on an immersed body".
  • Hyperbolic partial differential equation — In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n − 1 derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface.
  • Hypersonic — see High-hypersonic.
  • Hypoxia — Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during hypoventilation training or strenuous physical exercise.
  • HyShot — HyShot is a research project of The University of Queensland, Australia Centre for Hypersonics, to demonstrate the possibility of supersonic combustion under flight conditions using two scramjet engines, one designed by The University of Queensland and one designed by QinetiQ (formerly the MOD's Defence Evaluation & Research Agency).

I

  • Impulse — Specific impulse (usually abbreviated Isp) is a measure of how effectively a rocket uses propellant or a jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. If mass (kilogram, pound-mass, or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound-force) is used instead, then specific impulse has units of time (seconds). Multiplying flow rate by the standard gravity (g0) converts specific impulse from the mass basis to the weight basis.
  • Indicated airspeed — Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an aircraft, driven by the pitot-static system. It uses the difference between total pressure and static pressure, provided by the system, to either mechanically or electronically measure dynamic pressure. The dynamic pressure includes terms for both density and airspeed. Since the airspeed indicator cannot know the density, it is by design calibrated to assume the sea level standard atmospheric density when calculating airspeed. Since the actual density will vary considerably from this assumed value as the aircraft changes altitude, IAS varies considerably from true airspeed (TAS), the relative velocity between the aircraft and the surrounding air mass. Calibrated airspeed (CAS) is the IAS corrected for instrument and position error.
  • Instrument landing system — An Instrument Landing System (ILS) enables pilots to conduct an instrument approach to landing if they are unable to establish visual contact with the runway.
  • Integral — In mathematics, an integral assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise by combining infinitesimal data. Integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other.
  • Internal combustion — An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.
  • Interplanetary Transport Network — The Interplanetary Transport Network (ITN) is a collection of gravitationally determined pathways through the Solar System that require very little energy for an object to follow. The ITN makes particular use of Lagrange points as locations where trajectories through space are redirected using little or no energy. These points have the peculiar property of allowing objects to orbit around them, despite lacking an object to orbit. While it would use little energy, transport along the network would take a long time.
  • Interplanetary travel — Interplanetary spaceflight or interplanetary travel is travel between planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System.
  • Interstellar travel — Interstellar travel is the term used for crewed or uncrewed travel between stars or planetary systems. Interstellar travel will be much more difficult than interplanetary spaceflight; the distances between the planets in the Solar System are less than 30 astronomical units (AU)—whereas the distances between stars are typically hundreds of thousands of AU, and usually expressed in light-years. Because of the vastness of those distances, interstellar travel would require a high percentage of the speed of light; huge travel time, lasting from decades to millennia or longer.
  • Ion thruster — An ion thruster or ion drive is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating cations by utilizing electricity. The term refers strictly to gridded electrostatic ion thrusters, and is often incorrectly loosely applied to all electric propulsion systems including electromagnetic plasma thrusters.
  • ISRO — The Indian Space Research Organisation (ISRO, /ˈɪsroʊ/) is the space agency of the Government of India headquartered in the city of Bengaluru. Its vision is to "harness space technology for national development while pursuing space science research and planetary exploration." Indian National Committee for Space Research (INCOSPAR) was established under the DAE in 1962 by the efforts of independent India's first Prime Minister, Jawaharlal Nehru and scientist Vikram Sarabhai recognizing the need in space research. INCOSPAR grew into ISRO in 1969 also under the DAE. In 1972 Government of India setup a Space Commission and the Department of Space (DOS), bringing ISRO under the DOS. The establishment of ISRO thus institutionalized space research activities in India. It is managed by the Department of Space, which reports to the Prime Minister of India.

J

  • Jet engine — A jet engine is a type of reaction engine discharging a fast-moving jet that generates thrust by jet propulsion. This broad definition includes airbreathing jet engines (turbojets, turbofans, ramjets, and pulse jets). In general, jet engines are combustion engines.

    Common parlance applies the term jet engine more narrowly, referring to various airbreathing jet engine, a type of reaction engine. These typically feature a rotating air compressor powered by a turbine, with the leftover power providing thrust via a propelling nozzle – this process is known as the Brayton thermodynamic cycle. Jet aircraft use such engines for long-distance travel. Early jet aircraft used turbojet engines which were relatively inefficient for subsonic flight. Most modern subsonic jet aircraft use more complex high-bypass turbofan engines. They give higher speed and greater fuel efficiency than piston and propeller aeroengines over long distances. A few air-breathing engines made for high speed applications (ramjets and scramjets) use the ram effect of the vehicle's speed instead of a mechanical compressor.

    The thrust of a typical jetliner engine went from 5,000 lbf (22,000 N) (de Havilland Ghost turbojet) in the 1950s to 115,000 lbf (510,000 N) (General Electric GE90 turbofan) in the 1990s, and their reliability went from 40 in-flight shutdowns per 100,000 engine flight hours to less than 1 per 100,000 in the late 1990s. This, combined with greatly decreased fuel consumption, permitted routine transatlantic flight by twin-engined airliners by the turn of the century, where before a similar journey would have required multiple fuel stops.

K

  • Keel effect — In aeronautics, the keel effect (also known as the pendulum effect or pendulum stability) is the result of the sideforce-generating surfaces being above (or below) the center of mass (which coincides with the center of gravity) in an aircraft. Along with dihedral, sweepback, and weight distribution, keel effect is one of the four main design considerations in aircraft lateral stability.
  • Kepler’s laws of planetary motion — In astronomy, Kepler's laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

    1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
    2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
    3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
  • Kessler syndrome — The Kessler syndrome (also called the Kessler effect, collisional cascading or ablation cascade), proposed by the NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) is high enough that collisions between objects could cause a cascade where each collision generates space debris that increases the likelihood of further collisions. One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges impractical for many generations.
  • Kestrel rocket engine — The Kestrel engine was an LOX/RP-1 pressure-fed rocket engine. The Kestrel engine was developed in the 2000s by SpaceX for upper stage use on the Falcon 1 rocket. Kestrel is no longer being manufactured; the last flight of Falcon 1 was in 2009.
  • Kinetic energy — In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
  • Kite — A kite is a tethered heavier-than-air craft with wing surfaces that react against the air to create lift and drag. A kite consists of wings, tethers and anchors. Kites often have a bridle and tail to guide the face of the kite so the wind can lift it. Some kite designs don't need a bridle; box kites can have a single attachment point. A kite may have fixed or moving anchors that can balance the kite. One technical definition is that a kite is “a collection of tether-coupled wing sets“.
  • Kutta condition — The Kutta condition is a principle in steady-flow fluid dynamics, especially aerodynamics, that is applicable to solid bodies with sharp corners, such as the trailing edges of airfoils. It is named for German mathematician and aerodynamicist Martin Kutta.
  • Kutta–Joukowski theorem — The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil and any two-dimensional bodies including circular cylinders translating in a uniform fluid at a constant speed large enough so that the flow seen in the body-fixed frame is steady and unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the density of the fluid and the circulation around the airfoil. The circulation is defined as the line integral around a closed loop enclosing the airfoil of the component of the velocity of the fluid tangent to the loop. It is named after Martin Kutta and Nikolai Zhukovsky (or Joukowski) who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications.

L

  • Landing — Landing is the last part of a flight, where a flying animal, aircraft, or spacecraft returns to the ground. When the flying object returns to water, the process is called alighting, although it is commonly called "landing", "touchdown" or "splashdown" as well. A normal aircraft flight would include several parts of flight including taxi, takeoff, climb, cruise, descent and landing.
  • Landing gear — Landing gear is the undercarriage of an aircraft or spacecraft and may be used for either takeoff or landing. For aircraft it is generally both. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company.
  • Lagrangian — Lagrangian mechanics is a reformulation of classical mechanics, introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788.
  • Lagrangian point — In celestial mechanics, the Lagrangian points (/ləˈɡrɑːndʒiən/ also Lagrange points, L-points, or libration points) are the points near two large bodies in orbit where a smaller object will maintain its position relative to the large orbiting bodies. At other locations, a small object would go into its own orbit around one of the large bodies, but at the Lagrangian points the gravitational forces of the two large bodies, the centripetal force of orbital motion, and (for certain points) the Coriolis acceleration all match up in a way that cause the small object to maintain a stable or nearly stable position relative to the large bodies.
  • Laser broom — A laser broom is a proposed ground-based laser beam-powered propulsion system whose purpose is to sweep space debris out of the path of other artificial satellites such as the International Space Station. It would heat one side of an object enough to change its orbit and make it hit the atmosphere sooner.
  • Laser Camera System — Neptec Design Group is an Ottawa based, Canadian vision systems company, providing machine vision solutions for space, industrial, and military applications. Privately owned and founded in 1990, Neptec is a NASA prime contractor, supplying operational systems to both the Space Shuttle and International Space Station programs. Starting in 2000, Neptec began expanding its technology to include active 3D imaging systems and 3D processing software. This work led directly to the development of Neptec's Laser Camera System, which is an operational system used by NASA to inspect the shuttle's external surfaces during flight. Building on Laser Camera System technology, Neptec has also developed a 3D imaging and tracking system designed for automated on-orbit rendezvous, inspection and docking. The TriDAR combines a high precision, short range triangulation sensor with a long range LIDAR sensor into the same optical path.
  • Latus rectum — Various parameters are associated with a conic section. Recall that the principal axis is the line joining the foci of an ellipse or hyperbola, and the center in these cases is the midpoint of the line segment joining the foci.
    The latus rectum is the chord parallel to the directrix and passing through the focus (or one of the two foci). Its length is denoted by 2ℓ.
  • Launch window — In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular vehicle (rocket, Space Shuttle, etc.) must be launched in order to reach its intended target. If the rocket is not launched within a given window, it has to wait for the window on the next day of the period. Launch periods and launch windows are very dependent on both the rocket's capability and the orbit to which it is going.
  • Law of universal gravitation — Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica ("the Principia"), first published on 5 July 1687. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him.
  • Leading edge — The leading edge is the part of the wing that first contacts the air; alternatively it is the foremost edge of an airfoil section. The first is an aerodynamic definition, the second a structural one. As an example of the distinction, during a tailslide, from an aerodynamic point of view, the trailing edge becomes the leading edge and vice versa but from a structural point of view the leading edge remains unchanged.
  • Lift — A fluid flowing past the surface of a body exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it can act in any direction at right angles to the flow.
  • Lift coefficient — is a dimensionless coefficient that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The lift coefficient cl refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord.
  • Lightcraft — The Lightcraft is a space- or air-vehicle driven by beam-powered propulsion, the energy source powering the craft being external. It has been theoretically conceptualized by aerospace engineering Leik Myrabo at Rensselaer Polytechnic Institute in 1976, who developed the concept further with working prototypes, funded in the 1980s by the Strategic Defense Initiative organization, and the decade after by the Advanced Concept Division of the US Air Force AFRL, NASA's MFSC and the Lawrence Livermore National Laboratory.
  • Lighter than air — Lighter than air refers to materials (usually gases) that are buoyant in air because they have average densities lower than that of air. Dry air has a density of about 1.29 g/L (gram per liter) at standard conditions for temperature and pressure (STP) and an average molecular mass of 28.97 g/mol.
    Some of these gases are used as lifting gases in lighter-than-air aircraft, which include free balloons, moored balloons, and airships. Heavier-than-air aircraft include airplanes, gliders and helicopters.
  • Liquid air cycle engine — A liquid air cycle engine (LACE) is a type of spacecraft propulsion engine that attempts to increase its efficiency by gathering part of its oxidizer from the atmosphere. A liquid air cycle engine uses liquid hydrogen (LH2) fuel to liquefy the air.
  • Liquid fuels — Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel (for automotive uses), ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.
  • Liquid-propellant rocket — A liquid-propellant rocket or liquid rocket is a rocket engine that uses liquid propellants. Liquids are desirable because their reasonably high density allows the volume of the propellant tanks to be relatively low, and it is possible to use lightweight centrifugal turbopumps to pump the propellant from the tanks into the combustion chamber, which means that the propellants can be kept under low pressure. This permits the use of low-mass propellant tanks, resulting in a high mass ratio for the rocket.
  • Liquid rocket propellants — The highest specific impulse chemical rockets use liquid propellants (liquid-propellant rockets). They can consist of a single chemical (a monopropellant) or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.
  • Lithobraking — Lithobraking is a landing technique used by unmanned space vehicles to safely reach the surface of a celestial body while reducing landing speed by impact with the body's surface.
  • Loiter — In aeronautics and aviation, loiter is a phase of flight. The phase consists of cruising for a certain amount of time over a small region. The loiter phase occurs, for general aviation, generally at the end of the flight plan, normally when the plane is waiting for clearance to land.
  • Low Earth orbit — A Low Earth Orbit (LEO) is an Earth-centered orbit with an altitude of 2,000 km (1,200 mi) or less (approximately one third of the radius of Earth), or with at least 11.25 periods per day (an orbital period of 128 minutes or less) and an eccentricity less than 0.25.[2] Most of the manmade objects in space are in LEO. A histogram of the mean motion of the cataloged objects shows that the number of objects drops significantly beyond 11.25.
  • Lunar space elevator — A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.

M

  • Mach number — In fluid dynamics, the Mach number is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound.
  • Magnetic sail — A magnetic sail or magsail is a proposed method of spacecraft propulsion which would use a static magnetic field to deflect charged particles radiated by the Sun as a plasma wind, and thus impart momentum to accelerate the spacecraft. A magnetic sail could also thrust directly against planetary and solar magnetospheres.
  • Magnetoplasmadynamic thruster — A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force (the force on a charged particle by an electromagnetic field) to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or (mostly in Japan) MPD arcjet.
  • Mass — Mass is both a property of a physical body and a measure of its resistance to acceleration (a change in its state of motion) when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.
  • Mass driver — A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. All existing and contemplated mass drivers use coils of wire energized by electricity to make electromagnets. Sequential firing of a row of electromagnets accelerates the payload along a path. After leaving the path, the payload continues to move due to momentum.
  • Mechanics of fluids — Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, astrophysics, and biology.
  • Membrane mirror — Membrane mirrors are mirrors made on thin films of material, such as metallized PET film. They can be used as components in adaptive optics systems.
  • Metre per second — The metre per second (American English: meter per second) is an SI derived unit of both speed (scalar) and velocity (vector quantity which specifies both magnitude and a specific direction), defined by distance in metres divided by time in seconds.
  • Microwave landing system — The microwave landing system (MLS) is an all-weather, precision radio guidance system intended to be installed at large airports to assist aircraft in landing, including 'blind landings'. MLS enables an approaching aircraft to determine when it's aligned with the destination runway and on the correct glidepath for a safe landing. MLS was intended to replace or supplement the instrument landing systems (ILS). MLS has a number of operational advantages over ILS, including a wider selection of channels to avoid interference with nearby installations, excellent performance in all weather, a small "footprint" at the airports, and wide vertical and horizontal "capture" angles that allowed approaches from wider areas around the airport.
  • Mini-magnetospheric plasma propulsion — A magnetic sail or magsail is a proposed method of spacecraft propulsion which would use a static magnetic field to deflect charged particles radiated by the Sun as a plasma wind, and thus impart momentum to accelerate the spacecraft. A magnetic sail could also thrust directly against planetary and solar magnetospheres.
  • Moment of inertia — The moment of inertia, otherwise known as the angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration.
  • Momentum — In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction in three-dimensional space.
  • Momentum wheel — A reaction wheel (RW) is a type of flywheel used primarily by spacecraft for three axis attitude control, which doesn't require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be rotated by very small amounts, such as keeping a telescope pointed at a star.
  • Monopropellant rocket — A monopropellant rocket (or "monoprop rocket") is a rocket that uses a single chemical as its propellant.
  • Motion — In physics, motion is the change in position of an object with respect to its surroundings in a given interval of time . Motion is mathematically described in terms of displacement, distance, velocity, acceleration, time, and speed. Motion of a body is observed by attaching a frame of reference to an observer and measuring the change in position of the body relative to that frame.
  • Multistage rocket — A multistage rocket, or step rocket,[citation needed] is a launch vehicle that uses two or more rocket stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.

N

  • Nanotechnology — Nanotechnology ("nanotech") is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through 2012, the USA has invested $3.7 billion using its National Nanotechnology Initiative, the European Union has invested $1.2 billion, and Japan has invested $750 million.
  • NASA — The National Aeronautics and Space Administration (NASA, /ˈnæsə/) is an independent agency of the United States Federal Government responsible for the civilian space program, as well as aeronautics and aerospace research.
  • Navier–Stokes equations — In physics, the Navier–Stokes equations (/nævˈjeɪ stoʊks/), named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of viscous fluid substances.
  • Newton (unit) — The newton (symbol: N) is the International System of Units (SI) derived unit of force. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically Newton's second law of motion.
  • Newton’s laws of motion — Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist.
  • Nose cone design — Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance. For many applications, such a task requires the definition of a solid of revolution shape that experiences minimal resistance to rapid motion through such a fluid medium, which consists of elastic particles.
  • Nozzle — A nozzle is a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or pipe.
    A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them. In a nozzle, the velocity of fluid increases at the expense of its pressure energy.

O

  • Orbit — In physics, an orbit is the gravitationally curved trajectory of an object, such as the trajectory of a planet around a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the central mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.
  • Orbit phasing — In astrodynamics, orbit phasing is the adjustment of the time-position of spacecraft along its orbit, usually described as adjusting the orbiting spacecraft's true anomaly. Orbital phasing is primarily used in scenarios where a spacecraft in a given orbit must be moved to a different location within the same orbit. The change in position within the orbit is usually defined as the phase angle, ϕϕ, and is the change in true anomaly required between the spacecraft's current position to the final position.
  • Orbital eccentricity — The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy.
  • Orbital elements — Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are generally considered in classical two-body systems, where a Kepler orbit is used. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.
  • Orbital inclination — Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object.
  • Orbital inclination change — Orbital inclination change is an orbital maneuver aimed at changing the inclination of an orbiting body's orbit. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector (delta v) at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes).
  • Orbital maneuver — In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth (for example those in orbits around the Sun) an orbital maneuver is called a deep-space maneuver (DSM).
    The rest of the flight, especially in a transfer orbit, is called coasting.
  • Orbital mechanics — Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and law of universal gravitation. It is a core discipline within space-mission design and control.
  • Orbital node — An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes.
  • Orbital period — The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.
  • Orbital stationkeeping — In astrodynamics, the orbital maneuvers made by thruster burns that are needed to keep a spacecraft in a particular assigned orbit are called orbital station-keeping.
    For many Earth satellites the effects of the non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.
  • Orbiter Boom Sensor System — The Orbiter Boom Sensor System (OBSS) was a 50-foot (15.24 m) boom carried on board NASA's Space Shuttles. The boom was grappled by the Canadarm and served as an extension of the arm, doubling its length to a combined total of 100 feet (30 m). At the far end of the boom was an instrumentation package of cameras and lasers used to scan the leading edges of the wings, the nose cap, and the crew compartment after each lift-off and before each landing. If flight engineers suspected potential damage to other areas, as evidenced in imagery captured during lift-off or the rendezvous pitch maneuver, then additional regions could be scanned.
  • Osculating orbit — In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit (i.e. an elliptic or other conic one) that it would have around its central body if perturbations were absent. That is, it is the orbit that coincides with the current orbital state vectors (position and velocity).

P

  • Parallel axes rule — The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, named after Christiaan Huygens and Jakob Steiner, can be used to determine the mass moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between the axes.
  • Parasitic drag — Parasitic drag is drag that results when an object is moved through a fluid medium. In the case of aerodynamic drag, the fluid medium is the atmosphere. Parasitic drag is a combination of form drag, skin friction drag and interference drag. The other components of total drag, induced drag, wave drag, and ram drag (see ram pressure), are separate types of drag, and are not components of parasitic drag. Parasitic drag does not result from the induction of lift on the body, hence it is considered parasitic.
  • Parawing — The Rogallo wing is a flexible type of wing. In 1948, Francis Rogallo, a NASA engineer, and his wife Gertrude Rogallo, invented a self-inflating flexible wing they called the Parawing, also known after them as the "Rogallo Wing" and flexible wing. NASA considered Rogallo's flexible wing as an alternative recovery system for the Mercury and Gemini space capsules, and for possible use in other spacecraft landings, but the idea was dropped from Gemini in 1964 in favor of conventional parachutes.
  • Perpendicular axes rule — In physics, the perpendicular axis theorem (or plane figure theorem) can be used to determine the moment of inertia of a rigid object that lies entirely within a plane, about an axis perpendicular to the plane, given the moments of inertia of the object about two perpendicular axes lying within the plane. The axes must all pass through a single point in the plane.
  • Physical science — Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences".
  • Physics — Physics (from Ancient Greek: φυσική (ἐπιστήμη), translit. physikḗ (epistḗmē), lit. 'knowledge of nature', from φύσις phýsis "nature") is the natural science that studies matter, its motion, and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.
  • Planetary orbit — In physics, an orbit is the gravitationally curved trajectory of an object, such as the trajectory of a planet around a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the central mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.
  • Plasma (physics) — Plasma (from Ancient Greek πλάσμα​, meaning 'moldable substance') is one of the four fundamental states of matter, and was first described by chemist Irving Langmuir in the 1920s. Plasma can be artificially generated by heating or subjecting a neutral gas to a strong electromagnetic field to the point where an ionized gaseous substance becomes increasingly electrically conductive, and long-range electromagnetic fields dominate the behaviour of the matter.
  • Plug nozzle — The plug nozzle is a type of nozzle which includes a centerbody or plug around which the working fluid flows. Plug nozzles have applications in aircraft, rockets, and numerous other fluid flow devices.
  • Pogo oscillation — Pogo oscillation is a self-excited vibration in liquid-propellant rocket engines caused by combustion instability. The unstable combustion results in variations of engine thrust, causing variations of acceleration on the vehicle's flexible structure, which in turn cause variations in propellant pressure and flow rate, closing the self-excitation cycle. The name is a metaphor comparing the longitudinal vibration to the bouncing of a pogo stick. Pogo oscillation places stress on the frame of the vehicle, which in severe cases is dangerous.
  • Prandtl–Glauert singularity — The Prandtl–Glauert singularity is a theoretical construct in flow physics, often incorrectly used to explain vapor cones in transonic flows. It is the prediction by the Prandtl–Glauert transformation that infinite pressures would be experienced by an aircraft as it approaches the speed of sound. Because it is invalid to apply the transformation at these speeds, the predicted singularity does not emerge. The incorrect association is related to the early-20th-century misconception of the impenetrability of the sound barrier.
  • Precession — Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.
  • Pressure — Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled gage pressure) is the pressure relative to the ambient pressure.
  • Pressure altitude — Pressure altitude within the atmosphere is the altitude in the International Standard Atmosphere (ISA) with the same atmospheric pressure as that of the part of the atmosphere in question.
  • Pressure-fed engine — The pressure-fed engine is a class of rocket engine designs. A separate gas supply, usually helium, pressurizes the propellant tanks to force fuel and oxidizer to the combustion chamber. To maintain adequate flow, the tank pressures must exceed the combustion chamber pressure.
  • Propeller — An aircraft propeller, or airscrew, converts rotary motion from an engine or other power source, into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically-variable "constant-speed" type.
  • Proper orbital elements — The proper orbital elements of an orbit are constants of motion of an object in space that remain practically unchanged over an astronomically long timescale. The term is usually used to describe the three quantities:
    - proper semimajor axis (ap),
    - proper eccentricity (ep), and
    - proper inclination (ip).
  • Pulsed inductive thruster — A pulsed inductive thruster (PIT) is a form of ion thruster, used in spacecraft propulsion. It is a plasma propulsion engine using perpendicular electric and magnetic fields to accelerate a propellant with no electrode.
  • Pulsed plasma thruster — A pulsed plasma thruster (PPT), also known as a plasma jet engine, is a form of electric spacecraft propulsion. PPTs are generally considered the simplest form of electric spacecraft propulsion and were the first form of electric propulsion to be flown in space, having flown on two Soviet probes (Zond 2 and Zond 3) starting in 1964. PPTs are generally flown on spacecraft with a surplus of electricity from abundantly available solar energy.
  • Propulsion — Propulsion means to push forward or drive an object forward . The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor (means of converting this power into propulsive force).

R

  • Radar — Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the object(s). Radio waves (pulsed or continuous) from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.
  • Radio direction finder — A radio direction finder (RDF) is a device for finding the direction, or bearing, to a radio source. The act of measuring the direction is known as radio direction finding or sometimes simply direction finding (DF). Using two or more measurements from different locations, the location of an unknown transmitter can be determined; alternately, using two or more measurements of known transmitters, the location of a vehicle can be determined. RDF is widely used as a radio navigation system, especially with boats and aircraft.
  • Railgun — A railgun is a device that uses electromagnetic force to launch high velocity projectiles, by means of a sliding armature that is accelerated along a pair of conductive rails. It is typically constructed as a weapon, and the projectile normally does not contain explosives, instead relying on the projectile's high speed to inflict damage. The railgun uses a pair of parallel conductors - 'rails' - along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail. It is based on principles similar to those of the homopolar motor.
  • Ram accelerator — A ram accelerator is a device for accelerating projectiles or just a single projectile to extremely high speeds using jet-engine-like propulsion cycles based on ramjet or scramjet combustion processes. It is thought to be possible to achieve non-rocket spacelaunch with this technology.
  • Ramjet — A ramjet, sometimes referred to as a flying stovepipe or an athodyd (aero thermodynamic duct), is a form of airbreathing jet engine that uses the engine's forward motion to compress incoming air without an axial compressor or a centrifugal compressor. Because ramjets cannot produce thrust at zero airspeed, they cannot move an aircraft from a standstill. A ramjet-powered vehicle, therefore, requires an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3 (2,300 mph; 3,700 km/h). This type of engine can operate up to speeds of Mach 6 (4,600 mph; 7,400 km/h).
  • Rate of climb – In aeronautics, the rate of climb (RoC) is an aircraft's vertical speed – the positive or negative rate of altitude change with respect to time. In most ICAO member countries, even in otherwise metric countries, this is usually expressed in feet per minute (ft/min); elsewhere, it is commonly expressed in metre per second (m/s). The RoC in an aircraft is indicated with a vertical speed indicator (VSI) or instantaneous vertical speed indicator (IVSI).
  • Reaction control system — A reaction control system (RCS) is a spacecraft system that uses thrusters to provide attitude control, and sometimes translation. Use of diverted engine thrust to provide stable attitude control of a short-or-vertical takeoff and landing aircraft below conventional winged flight speeds, such as with the Harrier "jump jet", may also be referred to as a reaction control system.
  • Redshift rocket — The redshift rocket, envisaged by the novelist Karl Schroeder, is a fictional method of spacecraft propulsion.
  • Reentry — Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris, or bolides; and controlled entry (or reentry) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.
  • Reflection — Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.
  • Relativistic rocket — Relativistic rocket refers to any spacecraft that travels at a velocity close enough to light speed for relativistic effects to become significant. The meaning of "significant" is a matter of context, but often a threshold velocity of 30% to 50% of the speed of light (0.3c to 0.5c) is used. At 30% of c, the difference between relativistic mass and rest mass is only about 5%, while at 50% it is 15%, (at 0.75c the difference is over 50%) so that above this range of speeds special relativity is required to accurately describe motion, whereas below this range sufficient accuracy is usually provided by Newtonian physics and the Tsiolkovsky rocket equation.
  • Remote Manipulator System — The Shuttle Remote Manipulator System (SRMS), also known as Canadarm (or retroactively Canadarm 1), is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, maneuver and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the Shuttle for damage to the thermal protection system.
  • Resistojet rocket — A resistojet is a method of spacecraft propulsion (electric propulsion) that provides thrust by heating a, typically non-reactive, fluid. Heating is usually achieved by sending electricity through a resistor consisting of a hot incandescent filament, with the expanded gas expelled through a conventional nozzle.
  • Reusable launch system — A reusable launch system (RLS, or reusable launch vehicle, RLV) is a space launch system intended to allow for recovery of all or part of the system for later reuse. To date, several fully reusable sub-orbital systems and partially reusable orbital systems have been flown. However the design issues are extremely challenging and no fully reusable orbital launch system has yet been demonstrated. A wide variety of system concepts have been proposed, and several are represented in those which have actually flown.
  • Reynolds number — The Reynolds number (Re) is an important dimensionless quantity in fluid mechanics used to help predict flow patterns in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow, and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full size version. The predictions of the onset of turbulence and the ability to calculate scaling effects can be used to help predict fluid behaviour on a larger scale, such as in local or global air or water movement and thereby the associated meteorological and climatological effects.
  • RL-10 (rocket engine) — The RL10 is a liquid-fuel cryogenic rocket engine used on the Centaur, S-IV, and Delta Cryogenic Second Stage upper stages. Built in the United States by Aerojet Rocketdyne (formerly by Pratt & Whitney Rocketdyne), the RL10 burns cryogenic liquid hydrogen and liquid oxygen propellants, with each engine producing 64.7 to 110 kN (14,545–24,729 lbf) of thrust in vacuum depending on the version in use. The RL10 was the first liquid hydrogen rocket engine to be built in the United States, and development of the engine by Marshall Space Flight Center and Pratt & Whitney began in the 1950s, with the first flight occurring in 1961. Several versions of the engine have been flown, with three, the RL10A-4-2, the RL10B-2, and the RL10C-1 still being produced and flown on the Atlas V and Delta IV.
  • Rocket — A rocket (from Italian rocchetto "bobbin") is a missile, spacecraft, aircraft or other vehicle that obtains thrust from a rocket engine. Rocket engine exhaust is formed entirely from propellant carried within the rocket before use. Rocket engines work by action and reaction and push rockets forward simply by expelling their exhaust in the opposite direction at high speed, and can therefore work in the vacuum of space.
  • Rocket engine – A rocket engine uses stored rocket propellant mass for forming its high-speed propulsive jet. Rocket engines are reaction engines, obtaining thrust in accordance with Newton's third law. Most rocket engines use combustion, although non-combusting forms (such as cold gas thrusters) also exist. Vehicles propelled by rocket engines are commonly called rockets. Since they need no external material to form their jet, rocket engines can perform in a vacuum and thus can be used to propel spacecraft and ballistic missiles.
  • Rocket engine nozzle — A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate the combustion gases produced by burning propellants so that the exhaust gases exit the nozzle at hypersonic velocities.
  • Rocket fuel — Rocket propellant is a material used either directly by a rocket as the reaction mass (propulsive mass), or indirectly to produce the reaction mass in a chemical reaction. The reaction mass is that which is ejected, typically with very high speed, from a rocket engine to produce thrust.
  • Rocket launch — A rocket launch is the takeoff phase of the flight of a rocket. Launches for orbital spaceflights, or launches into interplanetary space, are usually from a fixed location on the ground, but may also be from a floating platform or from an airplane.
  • Rudder — A rudder is a primary control surface used to steer a ship, boat, submarine, hovercraft, aircraft, or other conveyance that moves through a fluid medium (generally air or water). On an aircraft the rudder is used primarily to counter adverse yaw and p-factor and is not the primary control used to turn the airplane. A rudder operates by redirecting the fluid past the hull (watercraft) or fuselage, thus imparting a turning or yawing motion to the craft. In basic form, a rudder is a flat plane or sheet of material attached with hinges to the craft's stern, tail, or after end. Often rudders are shaped so as to minimize hydrodynamic or aerodynamic drag. On simple watercraft, a tiller—essentially, a stick or pole acting as a lever arm—may be attached to the top of the rudder to allow it to be turned by a helmsman. In larger vessels, cables, pushrods, or hydraulics may be used to link rudders to steering wheels. In typical aircraft, the rudder is operated by pedals via mechanical linkages or hydraulics.

S

  • SABRE — SABRE (Synergetic Air Breathing Rocket Engine) is a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air-breathing rocket engine. The engine is being designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon spaceplane to low Earth orbit. SABRE is an evolution of Alan Bond's series of liquid air cycle engine (LACE) and LACE-like designs that started in the early/mid-1980s for the HOTOL project.
  • Satellite — In the context of spaceflight, a satellite is an artificial object which has been intentionally placed into orbit. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as Earth's Moon.
  • Saturn (rocket family) — The Saturn family of American rocket boosters was developed by a team of mostly German rocket scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo moon program. Three versions were built and flown: Saturn I, Saturn IB, and Saturn V.
  • Scalar (physics) — A scalar or scalar quantity in physics is a physical quantity that can be described by a single element of a number field such as a real number, often accompanied by units of measurement. A scalar is usually said to be a physical quantity that only has magnitude and no other characteristics. This is in contrast to vectors, tensors, etc. which are described by several numbers that characterize their magnitude, direction, and so on.
  • Schlieren — Schlieren (from German; singular "Schliere", meaning "streak") are optical inhomogeneities in transparent material not necessarily visible to the human eye. Schlieren physics developed out of the need to produce high-quality lenses devoid of these inhomogeneities. These inhomogeneities are localized differences in optical path length that cause light deviation. This light deviation can produce localized brightening, darkening, or even color changes in an image, depending on which way the ray deviates.
  • Schlieren photography — Schlieren photography (from German; singular "Schliere", meaning "streak") is a visual process that is used to photograph the flow of fluids of varying density. Invented by the German physicist August Toepler in 1864 to study supersonic motion, it is widely used in aeronautical engineering to photograph the flow of air around objects.
  • Scramjet — A scramjet (supersonic combustion ramjet) is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion (hence ramjet), but whereas a ramjet decelerates the air to subsonic velocities before combustion, the airflow in a scramjet is supersonic throughout the entire engine. That allows the scramjet to operate efficiently at extremely high speeds.
  • Second moment of area — The 2nd moment of area, also known as the area moment of inertia, or second area moment, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an I for an axis that lies in the plane or with a J for an axis perpendicular to the plane. In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension when working with the International System of Units is meters to the fourth power, m4, or inches to the fourth power, in4, when working in the Imperial System of Units.
  • Shock wave — In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.
  • SI — The International System of Units (SI, abbreviated from the French Système international (d'unités)) is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the ampere, kelvin, second, metre, kilogram, candela, mole, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities.
  • Single point of failure — A single point of failure (SPOF) is a part of a system that, if it fails, will stop the entire system from working. SPOFs are undesirable in any system with a goal of high availability or reliability, be it a business practice, software application, or other industrial system.
  • Single-stage to orbit — A single-stage-to-orbit (or SSTO) vehicle reaches orbit from the surface of a body without jettisoning hardware, expending only propellants and fluids. The term usually, but not exclusively, refers to reusable vehicles. No Earth-launched SSTO launch vehicles have ever been constructed. To date, orbital launches have been performed either by multi-stage fully or partially expendable rockets, the Space Shuttle having both attributes.
  • Skyhook (structure) — A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into space. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the centre of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object equal in mass to the payload.
  • Slew — Slew and slewing are terms which can refer to a spacecraft's orientation or movement in reference to a plane or fixed position such as Earth, the Sun, another celestial body or other point in space.
  • Stream function — The stream function is defined for incompressible (divergence-free) flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar stream function. The stream function can be used to plot streamlines, which represent the trajectories of particles in a steady flow. The two-dimensional Lagrange stream function was introduced by Joseph Louis Lagrange in 1781. The Stokes stream function is for axisymmetrical three-dimensional flow, and is named after George Gabriel Stokes.
  • Streamline — Streamlines, streaklines and pathlines are field lines in a fluid flow. They differ only when the flow changes with time, that is, when the flow is not steady.
  • Solar panel — Photovoltaic solar panels absorb sunlight as a source of energy to generate electricity. A photovoltaic (PV) module is a packaged, connected assembly of typically 6x10 photovoltaic solar cells. Photovoltaic modules constitute the photovoltaic array of a photovoltaic system that generates and supplies solar electricity in commercial and residential applications.
  • Solar sail — Solar sails (also called light sails or photon sails) are a proposed method of spacecraft propulsion using radiation pressure exerted by sunlight on large mirrors. A useful analogy may be a sailing boat; the light exerting a force on the mirrors is akin to a sail being blown by the wind. High-energy laser beams could be used as an alternative light source to exert much greater force than would be possible using sunlight, a concept known as beam sailing.
  • Solar thermal rocket — A solar thermal rocket is a theoretical spacecraft propulsion system that would make use of solar power to directly heat reaction mass, and therefore would not require an electrical generator, like most other forms of solar-powered propulsion do. The rocket would only have to carry the means of capturing solar energy, such as concentrators and mirrors. The heated propellant would be fed through a conventional rocket nozzle to produce thrust. Its engine thrust would be directly related to the surface area of the solar collector and to the local intensity of the solar radiation.
  • Solid of revolution — In mathematics, engineering, and manufacturing, a solid of revolution is a solid figure obtained by rotating a plane curve around some straight line (the axis of revolution) that lies on the same plane.
    Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid Theorem).
  • Solid rocket — A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Chinese, Indians, Mongols and Persians, as early as the 13th century.
  • Sound barrier — The sound barrier or sonic barrier is the sudden increase in aerodynamic drag and other undesirable effects experienced by an aircraft or other object when it approaches the speed of sound. When aircraft first began to be able to reach close to the speed of sound, these effects were seen as constituting a barrier making faster speeds very difficult or impossible. The term sound barrier is still sometimes used today to refer to aircraft reaching supersonic flight.
  • Space activity suit — A mechanical counterpressure (MCP) suit or space activity suit (SAS) is an experimental spacesuit which applies stable pressure against the skin by means of skintight elastic garments. The SAS is not inflated like a conventional spacesuit: it uses mechanical pressure, rather than air pressure, to compress the human body in low-pressure environments. Development was begun by NASA and the Air Force in the late 1950s and then again in the late 1960s, but neither design was used. Research is under way at the Massachusetts Institute of Technology (MIT) on a "Bio-Suit" System which is based on the original SAS concept.
  • Space elevator — A space elevator is a proposed type of planet-to-space transportation system. The main component would be a cable (also called a tether) anchored to the surface and extending into space. The design would permit vehicles to travel along the cable from a planetary surface, such as the Earth's, directly into space or orbit, without the use of large rockets. An Earth-based space elevator would consist of a cable with one end attached to the surface near the equator and the other end in space beyond geostationary orbit (35,786 km altitude).
  • Space fountain — A space fountain is a proposed form of an extremely tall tower extending into space. As known materials cannot support a static tower with this height a space fountain has to be an active structure: A stream of pellets is accelerated upwards at a ground station. At the top it is deflected downwards. The necessary force for this deflection supports the station at the top and payloads going up the structure. Spacecraft could launch from the top without having to deal with the atmosphere. This could reduce the cost of placing payloads into orbit. As downside the tower will collapse if the containment systems fail and the stream is broken. This risk could be reduced by several redundant streams.
  • Space plane — A spaceplane is an aerospace vehicle that operates as an aircraft in Earth's atmosphere, as well as a spacecraft when it is in space. It combines features of an aircraft and a spacecraft, which can be thought of as an aircraft that can endure and maneuver in the vacuum of space or likewise a spacecraft that can fly like an airplane. Typically, it takes the form of a spacecraft equipped with wings, although lifting bodies have been designed and tested as well. The propulsion to reach space may be purely rocket based or may use the assistance of airbreathing jet engines. The spaceflight is then followed by an unpowered glide return to landing.
  • Space Shuttle — The Space Shuttle was a partially reusable low Earth orbital spacecraft system operated by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft of which it was the only item funded for development. The first of four orbital test flights occurred in 1981, leading to operational flights beginning in 1982. In addition to the prototype whose completion was cancelled, five complete Shuttle systems were built and used on a total of 135 missions from 1981 to 2011, launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST); conducted science experiments in orbit; and participated in construction and servicing of the International Space Station. The Shuttle fleet's total mission time was 1322 days, 19 hours, 21 minutes and 23 seconds.
  • Space Shuttle external tank — The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three Space Shuttle Main Engines (SSME) in the orbiter. The ET was jettisoned just over 10 seconds after MECO (Main Engine Cut Off), where the SSMEs were shut down, and re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean (or Pacific Ocean in the case of direct-insertion launch trajectories), away from shipping lanes and were not recovered.
  • Space Shuttle Main Engine — The Aerojet Rocketdyne RS-25, otherwise known as the Space Shuttle main engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is planned to be used on its successor, the Space Launch System (SLS).
  • Space station — A space station, also known as an orbital station or an orbital space station, is a spacecraft capable of supporting crewmembers, which is designed to remain in space (most commonly as an artificial satellite in low Earth orbit) for an extended period of time and for other spacecraft to dock. A space station is distinguished from other spacecraft used for human spaceflight by lack of major propulsion or landing systems. Instead, other vehicles transport people and cargo to and from the station. As of 2018, one fully functioning space station is in Earth orbit: the International Space Station (operational and permanently inhabited). Various other components of future space stations, such as Japan's space elevator and U.S. inflatable modules, are also being tested in orbit. Previous stations include the Almaz and Salyut series, Skylab, Mir, and Tiangong-1 and Tiangong-2 . China, Russia, the U.S., as well as a few private companies are all planning other stations for the coming decades.
  • Space suit — A space suit is a garment worn to keep a human alive in the harsh environment of outer space, vacuum and temperature extremes. Space suits are often worn inside spacecraft as a safety precaution in case of loss of cabin pressure, and are necessary for extravehicular activity (EVA), work done outside spacecraft. Space suits have been worn for such work in Earth orbit, on the surface of the Moon, and en route back to Earth from the Moon. Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
  • Space technology — Space technology is technology developed by space science or the aerospace industry for use in spaceflight, satellites, or space exploration. Space technology includes spacecraft, satellites, space stations, and support infrastructure, equipment, and procedures. Space is such a novel environment that attempting to work in it requires new tools and techniques. Many common everyday services such as weather forecasting, remote sensing, GPS systems, satellite television, and some long distance communications systems critically rely on space infrastructure. Of the sciences, astronomy and Earth science (via remote sensing) benefit from space technology. New technologies originating with or accelerated by space-related endeavours are often subsequently exploited in other economic activities.
  • Space transport — Spaceflight (also written space flight) is ballistic flight into or through outer space. Spaceflight can occur with spacecraft with or without humans on board. Examples of human spaceflight include the U.S. Apollo Moon landing and Space Shuttle programs and the Russian Soyuz program, as well as the ongoing International Space Station. Examples of unmanned spaceflight include space probes that leave Earth orbit, as well as satellites in orbit around Earth, such as communications satellites. These operate either by telerobotic control or are fully autonomous.
  • Spacecraft — A spacecraft is a vehicle or machine designed to fly in outer space. Spacecraft are used for a variety of purposes, including communications, earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle (carrier rocket).
  • Spacecraft design — The design of spacecraft covers a broad area, including the design of both robotic spacecraft (satellites and planetary probes), and spacecraft for human spaceflight (spaceships and space stations).
  • Spacecraft propulsion — Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. Space propulsion or in-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with launch vehicles. Several methods, both pragmatic and hypothetical, have been developed each having its own drawbacks and advantages.
  • Special relativity — In physics, special relativity (SR, also known as the special theory of relativity or STR) is the generally accepted and experimentally well-confirmed physical theory regarding the relationship between space and time. In Albert Einstein's original pedagogical treatment, it is based on two postulates:
    1. the laws of physics are invariant (i.e. identical) in all inertial systems (i.e. non-accelerating frames of reference); and
    2. the speed of light in a vacuum is the same for all observers, regardless of the motion of the light source.
  • Specific impulse — Specific impulse (usually abbreviated Isp) is a measure of how effectively a rocket uses propellant or a jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. If mass (kilogram, pound-mass, or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound-force) is used instead, then specific impulse has units of time (seconds). Multiplying flow rate by the standard gravity (g0) converts specific impulse from the mass basis to the weight basis.
  • Speed of sound — The speed of sound is the distance travelled per unit time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 meters per second (1,234.8 km/h; 1,125 ft/s; 767 mph; 667 kn), or a kilometre in 2.9 s or a mile in 4.7 s. It depends strongly on temperature, but also varies by several meters per second, depending on which gases exist in the medium through which a soundwave is propagating.
  • Staged combustion cycle (rocket) — The staged combustion cycle (sometimes known as topping cycle or preburner cycle) is a power cycle of a bipropellant rocket engine. In the staged combustion cycle, propellant flows through multiple combustion chambers, and is thus combusted in stages. The main advantage relative to other rocket engine power cycles is high fuel efficiency, measured through specific impulse, while its main disadvantage is engineering complexity.
  • Subsonic — The speed of sound is the distance travelled per unit time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 meters per second (1,234.8 km/h; 1,125 ft/s; 767 mph; 667 kn), or a kilometre in 2.9 s or a mile in 4.7 s. It depends strongly on temperature, but also varies by several meters per second, depending on which gases exist in the medium through which a soundwave is propagating.
  • Supersonic — Supersonic travel is a rate of travel of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately 344 m/s, 1,125 ft/s, 768 mph, 667 knots, or 1,235 km/h. Speeds greater than five times the speed of sound (Mach 5) are often referred to as hypersonic. Flights during which only some parts of the air surrounding an object, such as the ends of rotor blades, reach supersonic speeds are called transonic. This occurs typically somewhere between Mach 0.8 and Mach 1.2.
  • Surface of revolution — A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) around an axis of rotation.
  • Sweep theory — Sweep theory is an aeronautical engineering description of the behavior of airflow over a wing when the wing's leading edge encounters the airflow at an oblique angle. The development of sweep theory resulted in the swept wing design used by most modern jet aircraft, as this design performs more effectively at transonic and supersonic speeds. In its advanced form, sweep theory led to the experimental oblique wing concept.

T

  • Tait–Bryan rotations — The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra.
  • Temperature — Temperature is a physical quantity expressing hot and cold. It is measured with a thermometer calibrated in one or more temperature scales. The most commonly used scales are the Celsius scale (formerly called centigrade) (denoted °C), Fahrenheit scale (denoted °F), and Kelvin scale (denoted K). The kelvin (the word is spelled with a lower-case k) is the unit of temperature in the International System of Units (SI), in which temperature is one of the seven fundamental base quantities. The Kelvin scale is widely used in science and technology.
  • Terminal velocity — Terminal velocity is the highest velocity attainable by an object as it falls through a fluid (air is the most common example). It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration.
  • Test target — A test target is a common feature on interplanetary landing craft such as the Viking Lander and Mars Exploration Rovers.
    The target is usually a visible marker or plate on the exterior of the vehicle within sight of the lander's imaging system (usually a CCD camera). The target possesses samples of primary colors and a grey scale. The camera uses this much like a photographer would use a chip chart on Earth; the color samples allow the camera to compensate for white balance and contrast. The target provides a visual reference as well, so that the initial orientation of the camera can be fixed.
    On the Mars Exploration Rover, the target was designed with a pillar elevated above the main surface, so that it could be used as a sundial.
  • Tether propulsion — Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.
  • Thermal protection system — The Space Shuttle thermal protection system (TPS) is the barrier that protected the Space Shuttle Orbiter during the searing 1,650 °C (3,000 °F) heat of atmospheric reentry. A secondary goal was to protect from the heat and cold of space while in orbit.
  • Thermodynamics — Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of bodies of matter. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the specific composition of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering.
  • Thrust — Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction on that system. The force applied on a surface in a direction perpendicular or normal to the surface is also called thrust. Force, and thus thrust, is measured using the International System of Units (SI) in newtons (symbol: N), and represents the amount needed to accelerate 1 kilogram of mass at the rate of 1 meter per second per second. In mechanical engineering, force orthogonal to the main load (such as in parallel helical gears) is referred to as thrust.
  • Thruster — A thruster is a propulsive device used by spacecraft and watercraft for station keeping, attitude control, in the reaction control system, or long-duration, low-thrust acceleration.
  • Torricelli’s equation — In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of an object moving with a constant acceleration along an axis (for example, the x axis) without having a known time interval.
  • Total air temperature — In aviation, stagnation temperature is known as total air temperature and is measured by a temperature probe mounted on the surface of the aircraft. The probe is designed to bring the air to rest relative to the aircraft. As the air is brought to rest, kinetic energy is converted to internal energy. The air is compressed and experiences an adiabatic increase in temperature. Therefore, total air temperature is higher than the static (or ambient) air temperature.
  • Trajectory — A trajectory or flight path is the path that a object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. Trajectory in quantum mechanics is not defined due to Heisenberg uncertainty principle that position and momentum can not be measured simultaneously.
  • Trailing edge — The trailing edge of an aerodynamic surface such as a wing is its rear edge, where the airflow separated by the leading edge rejoins. Essential flight control surfaces are attached here to control the direction of the departing air flow, and exert a controlling force on the aircraft. Such control surfaces include ailerons on the wings for roll control, elevators on the tailplane controlling pitch, and the rudder on the fin controlling yaw. Elevators and ailerons may be combined as elevons on tailless aircraft.
  • Trans Lunar Injection — A trans-lunar injection (TLI) is a propulsive maneuver used to set a spacecraft on a trajectory that will cause it to arrive at the Moon.
  • Transonic — In aeronautics, transonic (or transsonic) flight is flying at or near the speed of sound 343 meters per second (1,235 km/h; 1,125 ft/s; 767 mph; 667 kn, at sea level under average conditions), relative to the air through which the vehicle is traveling. A typical convention used is to define transonic flight as speeds in the range of Mach 0.72 to 1.0 (965–1,235 km/h (600–767 mph) at sea level).
  • Transverse wave — A transverse wave is a moving wave that consists of oscillations occurring perpendicular (right angled) to the direction of energy transfer (or the propagation of the wave).
    If a transverse wave is moving in the positive x-direction, its oscillations are in up and down directions that lie in the y–z plane.
  • Tripropellant rocket — A tripropellant rocket is a rocket that uses three propellants, as opposed to the more common bipropellant rocket or monopropellant rocket designs, which use two or one propellants, respectively. Tripropellant systems can be designed to have high specific impulse and have been investigated for single stage to orbit designs. While tripropellant motors have been tested by Rocketdyne and Energomash, no tripropellant rocket has been built or flown.
  • Tsiolkovsky rocket equation — The Tsiolkovsky rocket equation, classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and thereby move due to the conservation of momentum.
  • Turbomachinery — Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.
  • Two stage to orbit — A two-stage-to-orbit (TSTO) or two-stage rocket launch vehicle is a spacecraft in which two distinct stages provide propulsion consecutively in order to achieve orbital velocity. It is intermediate between a three-stage-to-orbit launcher and a hypothetical single-stage-to-orbit (SSTO) launcher.

U

  • UFO — An unidentified flying object (UFO) is an object observed in the sky that is not readily identified. Most UFOs are later identified as conventional objects or phenomena. The term is widely used for claimed observations of extraterrestrial spacecraft.

V

  • V-2 rocket — The V-2 (German: Vergeltungswaffe 2, "Retribution Weapon 2"), technical name Aggregat 4 (A4), was the world's first long-range guided ballistic missile. The missile, powered by a liquid-propellant rocket engine, was developed during the Second World War in Germany as a "vengeance weapon", assigned to attack Allied cities as retaliation for the Allied bombings against German cities. The V-2 rocket also became the first man-made object to travel into space by crossing the Kármán line with the vertical launch of MW 18014 on 20 June 1944.
  • Variable specific impulse magnetoplasma rocket — The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat a propellant. Then a magnetic field accelerates the resulting plasma to generate thrust (plasma propulsion engine). It is one of several types of spacecraft electric propulsion systems.
  • Velocity — The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/h to the north). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.
  • Viscometer — A viscometer (also called viscosimeter) is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers only measure under one flow condition.
  • Viscosity — The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
  • Vortex generator — A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface (or airfoil, such as an aircraft wing) or a rotor blade of a wind turbine. VGs may also be attached to some part of an aerodynamic vehicle such as an aircraft fuselage or a car. When the airfoil or the body is in motion relative to the air, the VG creates a vortex, which, by removing some part of the slow-moving boundary layer in contact with the airfoil surface, delays local flow separation and aerodynamic stalling, thereby improving the effectiveness of wings and control surfaces, such as flaps, elevators, ailerons, and rudders.

W

  • Wave drag — In aeronautics, wave drag is a component of the aerodynamic drag on aircraft wings and fuselage, propeller blade tips and projectiles moving at transonic and supersonic speeds, due to the presence of shock waves. Wave drag is independent of viscous effects, and tends to present itself as a sudden and dramatic increase in drag as the vehicle increases speed to the Critical Mach number. It is the sudden and dramatic rise of wave drag that leads to the concept of a sound barrier.
  • Weight — In science and engineering, the weight of an object is related to the amount of force acting on the object, either due to gravity or to a reaction force that holds it in place.
  • Weight function — A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings. They can be used to construct systems of calculus called "weighted calculus" and "meta-calculus".
  • Wind tunnel — Wind tunnels are large tubes with air moving inside. The tunnels are used to copy the actions of an object in flight. Researchers use wind tunnels to learn more about how an aircraft will fly. NASA uses wind tunnels to test scale models of aircraft and spacecraft. Some wind tunnels are big enough to hold full-size versions of vehicles. The wind tunnel moves air around an object, making it seem like the object is really flying.
  • Wing — A wing is a type of fin that produces lift, while moving through air or some other fluid. As such, wings have streamlined cross-sections that are subject to aerodynamic forces and act as an airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.
  • Woodward effect — The Woodward effect, also referred to as a Mach effect, is part of a hypothesis proposed by James F. Woodward in 1990. The hypothesis states that transient mass fluctuations arise in any object that absorbs internal energy while undergoing a proper acceleration. Harnessing this effect could generate a reactionless thrust, which Woodward and others claim to measure in various experiments.
  • Wright Flyer — The Wright Flyer (often retrospectively referred to as Flyer I or 1903 Flyer) was the first successful heavier-than-air powered aircraft. It was designed and built by the Wright brothers. They flew it four times on December 17, 1903, near Kill Devil Hills, about four miles (6.4 km) south of Kitty Hawk, North Carolina. Today, the airplane is exhibited in the National Air and Space Museum in Washington D.C. The U.S. Smithsonian Institution describes the aircraft as "the first powered, heavier-than-air machine to achieve controlled, sustained flight with a pilot aboard." The flight of Flyer I marks the beginning of the "pioneer era" of aviation.
  • Wright Glider of 1902 — The Wright brothers designed, built and flew a series of three manned gliders in 1900–1902 as they worked towards achieving powered flight. They also made preliminary tests with a kite in 1899. In 1911 Orville conducted tests with a much more sophisticated glider. Neither the kite nor any of the gliders was preserved, but replicas of all have been built.



A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W



Published in April 2019.






Find free glossaries at TranslationDirectory.com

Find free dictionaries at TranslationDirectory.com

Subscribe to free TranslationDirectory.com newsletter

Need more translation jobs from translation agencies? Click here!

Translation agencies are welcome to register here - Free!

Freelance translators are welcome to register here - Free!

Submit your glossary or dictionary for publishing at TranslationDirectory.com





Free Newsletter

Subscribe to our free newsletter to receive news from us:

 
Menu
Use More Glossaries
Use Free Dictionaries
Use Free Translators
Submit Your Glossary
Read Translation Articles
Register Translation Agency
Submit Your Resume
Obtain Translation Jobs
Subscribe to Free Newsletter
Buy Database of Translators
Obtain Blacklisted Agencies
Vote in Polls for Translators
Read News for Translators
Advertise Here
Read our FAQ
Read Testimonials
Use Site Map
Advertisements
translation directory

christianity portal
translation jobs


 

 
Copyright © 2003-2024 by TranslationDirectory.com
Legal Disclaimer
Site Map